
www.manaraa.com

Optimal surveillance strategy for invasive species
management when surveys stop after detection
Gurutzeta Guillera-Arroita, Cindy E. Hauser & Michael A. McCarthy

School of Botany, The University of Melbourne, Parkville, 3010, Victoria, Australia

Keywords

Cost-effectiveness, detectability, imperfect

detection, optimization, removal design,

survey design.

Correspondence

Gurutzeta Guillera-Arroita, School of Botany,

The University of Melbourne, Parkville, 3010,

Victoria, Australia. Tel: +61 3 90355479;

Fax: +61 3 93475460;

E-mail: gurutzeta.guillera@unimelb.edu.au

Funding Information

This work was supported by the Australian

Research Council Centre of Excellence for

Environmental Decisions and the National

Environment Research Program Decisions

Hub.

Received: 9 March 2014; Accepted: 11

March 2014

Ecology and Evolution 2014; 4(10): 1751–

1760

doi: 10.1002/ece3.1056

Abstract

Invasive species are a cause for concern in natural and economic systems and

require both monitoring and management. There is a trade-off between the

amount of resources spent on surveying for the species and conducting early

management of occupied sites, and the resources that are ultimately spent in

delayed management at sites where the species was present but undetected. Pre-

vious work addressed this optimal resource allocation problem assuming that

surveys continue despite detection until the initially planned survey effort is

consumed. However, a more realistic scenario is often that surveys stop after

detection (i.e., follow a “removal” sampling design) and then management

begins. Such an approach will indicate a different optimal survey design and

can be expected to be more efficient. We analyze this case and compare the

expected efficiency of invasive species management programs under both survey

methods. We also evaluate the impact of mis-specifying the type of sampling

approach during the program design phase. We derive analytical expressions

that optimize resource allocation between monitoring and management in sur-

veillance programs when surveys stop after detection. We do this under a sce-

nario of unconstrained resources and scenarios where survey budget is

constrained. The efficiency of surveillance programs is greater if a “removal sur-

vey” design is used, with larger gains obtained when savings from early detec-

tion are high, occupancy is high, and survey costs are not much lower than

early management costs at a site. Designing a surveillance program disregarding

that surveys stop after detection can result in an efficiency loss. Our results help

guide the design of future surveillance programs for invasive species. Addressing

program design within a decision-theoretic framework can lead to a better use

of available resources. We show how species prevalence, its detectability, and

the benefits derived from early detection can be considered.

Introduction

The number of introductions of non-native species is

increasing worldwide due partly to the intensification of

trade, transport, and travel (Meyerson and Mooney

2007). Introduced invasive species are a major driver of

biodiversity loss, as they compete with or prey upon

native species, often dramatically altering natural habitats

(Millennium Ecosystem Assessment 2005). The Conven-

tion on Biological Diversity (CBD) identifies the impacts

of invasive species on biodiversity as a critical global

issue, and in Article 8(h), it obliges parties to “prevent the

introduction of, control or eradicate those alien species

which threaten ecosystems, habitats and species.” Invasive

species are also a problem for economic activities, such as

agricultural production, where they can lead to large eco-

nomic losses (Sinden et al. 2004; Pimentel et al. 2005).

For instance, Williams et al. (2010) estimated the annual

costs of invasive non-native species to Great Britain at

£1.7 billion. The cost of controlling an invasion increases

substantially as the area occupied grows (Tobin et al.

2014), and managing a species during the early stages of

invasion can often save resources in the long term (Wit-

tenberg and W Cock 2001; Williams et al. 2010).

Identifying the presence of an invasive species at a site

early in the invasion process requires monitoring. As species

detection is usually imperfect (Yoccoz et al. 2001), the pres-

ence of the species might be overlooked during surveys.
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Imperfect detection is not only a problem for mobile species,

but is also an issue for sessile species such as plants (Garrard

et al. 2008; Moore et al. 2011; Chen et al. 2013). Declaring

an invasive species absent from a site where it is present can

ultimately lead to increased management costs (unless the

population goes extinct by itself). On the other hand, the

chance of overlooking species presence is reduced as the

effort invested in monitoring is increased. Therefore, a

trade-off between monitoring and management costs exists,

and a question arises of howmuch one should invest in inva-

sive species surveillance. Rather than setting the amount of

survey effort at an arbitrary level, this problem can be

framed in terms of cost optimization following a decision-

theoretic framework. Past studies have determined the opti-

mal survey investment for detecting new incursions (Mehta

et al. 2007), managing an incursion (Homans and Horie

2011; Epanchin-Niell et al. 2012), declaring eradication (Re-

gan et al. 2006; Rout et al. 2011), and managing multiple

incursion stages (Moore et al. 2010; Rout et al. 2011).

Hauser and McCarthy (2009) developed a survey

design for invasive species management via a cost optimi-

zation that balances monitoring and management costs in

different locations. This approach determines the optimal

level of surveillance at a given point in time and proved

useful for conducting surveys to detect the invasive plant

orange hawkweed (Pilosella aurantiaca), which occurs at

low densities in southeastern Australia (Curran 2013;

Herbert et al. 2013). This work found that intensive sur-

veillance is beneficial at sites that have high probability of

species occurrence and when savings associated with early

detection are large. The optimal investment of survey

effort is a nonlinear function of these factors.

In their optimization, Hauser and McCarthy (2009)

assumed for simplicity that the cost of surveying a site was

the same regardless of whether the species was detected or

not. However, in the surveillance of invasive species, we

can expect that surveys would normally be terminated once

a species is detected, as species detection is all that is needed

for triggering management action. Once a species is

detected at a site, remaining resources can be directed to

management or to the monitoring of other sites. Hence,

terminating surveys after detection will lead to a more effi-

cient invasive management program. We expect that con-

sidering this characteristic of the sampling will mean that

the optimal level of survey effort at each site will differ from

the solution of Hauser and McCarthy (2009), especially

when the species is encountered frequently.

In this paper, we revisit the problem of optimal surveil-

lance in invasive management programs, with an explicit

consideration of surveys ending at any site when the spe-

cies is detected. Our aim is threefold: (1) to provide the

analytical solution to the stated cost optimization prob-

lem, as well as code for its implementation, as a tool for

designing future surveys; (2) to evaluate how the expected

efficiency of an invasive management program compares

under both monitoring strategies (i.e., continuing or

stopping after detection); and (3) to assess the impact of

disregarding that surveys stop after detection during sur-

vey design. We consider the two scenarios contemplated

by Hauser and McCarthy (2009): one without budgetary

constraints and another in which the resources that can

be spent for surveillance are constrained.

Methods

Scenario considered

We consider the following scenario, as proposed by Haus-

er and McCarthy (2009). A site is surveyed, and if the spe-

cies is detected, then the site is managed for its

eradication. If the species is not detected, the site is not

managed under the assumption that the species is not

present. However, the species could have been present and

missed, with the lack of early management leading to a

wider infestation that ultimately requires higher manage-

ment costs. Unlike Hauser and McCarthy (2009), here, we

assume that surveys at a site are immediately discontinued

after first detection and that the unused survey effort can

be utilized elsewhere. In the occupancy estimation litera-

ture, a design in which surveys end after first detection is

referred to as a “removal” design, given that sites are

removed from the set of sites being sampled after the spe-

cies is detected (MacKenzie and Royle 2005; MacKenzie

et al. 2006 p. 89). Hereafter, we adopt this terminology to

refer to this type of sampling approach, and in contrast,

we use the term “nonremoval” to refer to surveys that do

not stop after detection.

Detection model

We modeled the detection of the species at occupied sites

as a Poisson point process with rate ci (Cox and Isham

1980), where ci is the mean number of detections per unit

of survey. Under such a model, the time to first detection

is exponentially distributed and the probability to detect

the species (at least once) at an occupied site in a survey

of duration Li is 1 � exp (�ciLi). Following a “removal”

design, the site is surveyed until the species is detected or

until a maximum survey length, LMi
, is reached, whatever

comes first. In Appendix S1, we show that the expected

length of surveys at occupied sites is

E Lijocc½ � ¼ c�i
ci
;

where c�i ¼ 1� expð�ciLMi
Þ is the probability of detect-

ing the species at an occupied site before the survey
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terminates. Considering that the species might be absent

from the site, the unconditional expected survey length is

E Li½ � ¼ 1� wið ÞLMi
þ wi

c�i
ci
; (1)

where wi is the probability that the site i is occupied by the

species. It obviously holds that E½Li� � LMi
(i.e., survey dura-

tion cannot exceed the maximum allowed LMi
) and that

E½Li� approaches LMi
as ci or wi approaches zero (i.e., the

expected survey length is greater at sites unlikely to contain

the species, or if the species is very hard to detect).

Optimization

We assume that our study covers n sites and we want to

determine the optimal amount of survey effort to be

spent at each of these sites so that we minimize overall

costs, including both those from surveillance and manage-

ment. That is, we are seeking the optimal values of LMi
.

The expected total cost at site i is

E CTi
½ � ¼ CSiE Li½ � þ CDi

Pr occ&detð Þ
þ CUi

Prðocc&undetÞ; (2)

where Pr(occ&det) = wi c�i is the probability that the site is
occupied and the species is detected, Pr(occ&undet) = wi

(1�c�i ) is the probability that the site is occupied and the

species is not detected, CSi is the survey cost per unit of sur-

vey length, CDi
is the cost of early management, which is

incurred when the species is detected, and CUi
is the cost of

late management, which is ultimately incurred if the species

is present but not detected during the surveys. The above

formulation can apply to the case where the invasive species

has a non-negligible intrinsic probability of going extinct at

a site left unmanaged (e), by replacing CUi
with CUi

(1 � e),
thus reflecting the expected costs of late management.

Without loss of generality, we hereafter express costs in

terms of costs of a survey of unit length, that is, CSi = 1.

We can express equation 2 as

E½CTi
� ¼ E½Li� þ CDi

wi þ DCiwið1� c�i Þ; (3)

where ΔCi = CUi
� CDi

denotes the increment in cost

derived from not managing the site in time before wide-

spread infestation. We assume that, as could be expected,

CUi
is considerably larger than CDi

(i.e., ΔCi > 0), and

hence, early management is beneficial at sites where the

species is present. Equation 3 shows the trade-off in costs:

as survey effort increases (i.e., E½Li� increases), the proba-

bility of detecting the species increases (c�i increases), and

hence, the expected management costs, which are a func-

tion of 1 � c�i , decrease.
In the case where there are no budgetary constraints,

the optimal amount of (maximum) survey effort at site

i, LMi
, is that which minimizes the expected total cost at

the site. Hence, for such a scenario, we obtained the

optimal LMi
by differentiating the expression in equa-

tion 3 with respect to LMi
, equating to zero and solving

(Appendix S2). We denote B* the total expected survey

costs over the n sites in this unconstrained scenario, that

is,
Pn

i¼1 E Li½ � ¼ B�.
When there is an overall budgetary constraint for the

surveys, the optimization cannot be performed on a site-

by-site basis as above. Instead, we ensure that the overall

expected survey costs are within the allowed budget.

Hence, we formulate the problem as the following con-

strained optimization

min
Xn

i¼1
E½CTi

�subject to
Xn

i¼1
E½Li� �B;

that is, we identify the set of LMi
that minimizes the total

expected costs summed across all sites,
Pn

i¼1 E½CTi
�, while

ensuring that the overall expected survey cost,
Pn

i¼1 E Li½ �,
does not exceed the allowed budget B. We solved the opti-

mization using the Kuhn-Tucker conditions (Winston

2004, Pp. 670–675; Appendix S3). Note that, if B ≥ B*, the
budget is effectively not constrained, and the optimal solu-

tion corresponds to that of the unconstrained problem.

Efficiency comparison between “removal”
and “nonremoval” sampling methods

We first explored the scenario without budgetary con-

straints. We computed the optimal allocation of survey

effort for a “removal” and a “nonremoval” design for dif-

ferent values of site occupancy probability wi (from 0.1 to

0.9), detection rate at occupied sites ci (from 0.1 to 2),

three cases of difference in costs between late and early

detection (ΔCi = 10, 20, 50), and two values of cost of

early detection (CDi
= 2, 10). We evaluated the efficiency

of the “removal” design with respect to the “nonremoval”

design by computing the ratio between the resulting over-

all expected costs of the program under the two sampling

schemes. Ratios smaller than one indicate that the

“removal” design results in lower overall expected costs.

We also evaluated the impact of wrongly assuming during

survey design that surveys continue after detection (i.e.,

assume a “nonremoval” design), when in reality a

“removal” design is used.

We then compared the efficiency of the “removal”

design with respect to the “nonremoval” design under

scenarios of constrained survey budget B. To add some

variability among sites, we generated a hypothetical land-

scape with 500 sites and assigned to each of the sites a

probability of occupancy and a detection rate. We chose

these values by drawing from uniform distributions. We
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explored two occupancy scenarios (w 2 ½0:2; 0:5� and

w 2 ½0:5; 0:8�) and two detection scenarios (c 2 ½0:1; 0:5�
and c 2 ½1:1; 1:5�). We assumed that the management

costs were equal for all sites with CDi
= 2 and ΔCi = 50.

We explored a range of survey budget levels, starting

with B = 0 and increasing the budget until it was larger

than the survey costs corresponding to the optimal level

of surveillance under unconstrained conditions (i.e.,

B > B*).
Finally, we assessed the effect that a scaling in the proba-

bilities of occurrence has in determining the optimal allo-

cation of effort. We assumed a scenario with 100 sites with

different occupancy probabilities, w 2 ½0:2; 0:4; 0:6; 0:8�,
25 sites of each type. We obtained the optimal level of sur-

veillance for this case and also after scaling the occupancy

probability by 0.6. In both cases, we set c = 1 and ΔC = 10

for all sites. We swept across survey budget levels, from

B = 0 to B = 300, which ensures survey budget levels lar-

ger than the optimal one under no constraints.

Results

Optimization results

Assuming no budgetary limitations, the maximum survey

length LMi
that minimizes the total expected cost at the

site is (Appendix S2)

LMi
¼ 1

ci
ln wi

1�wi
ðciDCi � 1Þ

h i
; if DCiwici [ 1

0; otherwise.

(
(4)

The optimal level of survey effort increases with

increases in the odds of site occupancy (i.e., large wi

1�wi
)

and with increases in the savings from early detection of

the species (i.e., large ΔCi). The optimal level of survey

effort increases with ci when ci is not much larger than

wiDCi but otherwise decreases with ci.
The solution of the constrained optimization (Appen-

dix S3) indicates that, when B < B*, a good design starts

by arranging sites in descending order of DCiwici. Only
the top sites are allocated some survey effort. Assuming

that the indexing now refers to such ordering, which sites

are allocated survey effort is summarized by the following

condition

DCswscs [ knþ1 �DCsþ1wsþ1csþ1;

where s denotes the number of sites that receive survey

effort and kn+1 takes a value that fulfills the expression in

Table 1 and hence depends on the allowed budget B, as

well as on the values of wi, ΔCi, and ci at the different

sites. The optimal survey length LMi
is

LMi
¼ 1

ci
ln wi

1�wi

ðciDCi�knþ1Þ
knþ1

h i
; i 2 S

0; otherwise

(
(5)

where S denotes the set of sites that receive survey effort

(i.e., sites 1. . . s after being ordered). To facilitate applica-

tion to real data, we provide code written in R (R Devel-

opment Core Team 2011) that implements these results

(equation 4 and 5), as well as those provided by Hauser

and McCarthy (2009), shown in Table S1 (see supplemen-

tary material).

Comparison between sampling methods

Table 1 compares the analytical results that we obtained

for the determination of optimal surveillance level consid-

ering a “removal” sampling design to the expressions

derived in Hauser and McCarthy (2009) assuming a

“nonremoval” sampling design. Their expressions are

Table 1. Comparison of the analytical optimization results for the cases where surveys stop after first detection (“removal” design) and surveys

do not stop after first detection (“nonremoval” design; Hauser and McCarthy 2009).

Surveys stop after detection

(“removal”)

Surveys do not stop after detection

(“nonremoval”)

No budget constraint
LMi

¼
1
ci
ln wi

1�wi
ðciDCi � 1Þ

h i
; ifDCiwici [ 1

0; otherwise.

(
LMi

¼
1
ci
lnðwiciDCiÞ; ifDCiwici [ 1

0; otherwise.

�

Survey costs

constrained B < B*
LMi

¼
1
ci
ln wi

1�wi

ciDCi�knþ1

knþ1

� �
; i 2 S

0; i 2 S0

(

where kn+1 fulfillsP
i2S

1�wi

ci
ln wi

1�wi

DCici�knþ1

knþ1

� �
þ 1

ci

wiDCici�knþ1

DCici�knþ1

n o
¼ B

with DCswscs [ knþ1 �DCsþ1wsþ1csþ1

LMi
¼

1
ci
ln wi

ciDCi

knþ1

� �
; i 2 S

0; i 2 S0

(

where

knþ1 ¼ exp
F1 � B

F2

� �
; F1 ¼

X
i2S

ln wiDCicið Þ
ci

and

F2 ¼
X
i2S

1

ci

with DCswscs [ knþ1 �DCsþ1wsþ1csþ1

Note: LMi
= f (ci, wi, ΔCi) Note: LMi

= f (ci, wiΔCi)
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broadly similar to ours, and only the top sites in terms of

DCiwici are allocated survey effort. However, the determi-

nation of how many sites receive survey effort, and the

amount of survey effort required at each site before estab-

lishing species absence (i.e., LMi
) is different. While for

the “nonremoval” sampling, the optimal level of surveil-

lance only depends on ci and the product wiDCi (Hauser

and McCarthy 2009), under a “removal” design, it

depends on wi, ci and ΔCi separately.

Looking at the unconstrained solution, it can be seen

that LMi
is always larger under the “removal” design (see

Appendix S4 for an analytical demonstration). In propor-

tion, the increase in LMi
is greater for sites with high wi,

low ci, and low ΔCi (Fig. 1, top row). The increase in LMi

does not necessarily imply that the actual amount of sur-

vey effort spent is always larger, given that surveys stop

after detection. In fact, the expected amount of survey

effort spent with a “removal” design (E½Li�) is smaller

than the amount of survey effort in a “nonremoval”

design when wi and ci are large, with the reduction being

more generalized as ΔCi increases (Fig. 1, bottom row).

The “removal” design improves efficiency, especially

when the probability of occupancy is high (Fig. 2, top

row), with the results being less sensitive to changes in

detection rate. The efficiency gain is more evident as ΔCi

increases, with the ratio of total costs getting as low as

0.5 in the scenarios we explored. As could be expected,

the difference in performance was less apparent when CDi

increased (Fig. in Appendix S5) as this means that survey

costs matter less. Assuming in the optimization that sur-

veys continue after detection when surveys in practice

stop after detection can increase costs (Fig. 2, bottom

Figure 1. Difference (%) in survey effort

under the optimal surveillance strategy

between a program based on “removal”

surveys and one with “nonremoval” surveys

for varying levels of occupancy wi and

detection rate ci, and three scenarios of

increased management costs due to late

detection ΔCi = 10, 20, and 50 (columns from

left to right). In the first row, we compare the

optimal survey length (LMi
) under both

schemes. In the second row, we compare the

expected survey length that will need to be

carried out (i.e., E½Li � in a “removal” design

and LMi
in a “nonremoval” design). Note the

difference in scale between the two rows.

These plots are independent of the particular

values CDi
and CUi

.

Figure 2. Efficiency measured as the ratio of

total expected costs (surveillance plus

management) for varying levels of occupancy

w and detection rate c, three scenarios of

increased management costs due to late

detection ΔCi = 10, 20, and 50 (columns from

left to right) and a cost associated with

detection of CDi = 2. In the first row, we

compare a program that uses a “removal”

sampling design with a program based on a

“nonremoval” design. In the second row, we

consider the application of a “nonremoval”

design to a “removal” management scenario

and we evaluate the loss in efficiency due to

terminating nondetection surveys early. Note

the difference in scale between the two rows.
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row). These costs arise from failed detections under the

lesser survey effort prescribed by the “nonremoval” opti-

mization.

The difference in efficiency between survey methods

changes if the survey budget is constrained (Fig. 3). As

the survey budget B decreases, with either method, the

total costs increase toward the value expected when there

is no monitoring, that is,
Pn

i¼1 wiCUi
. In our scenarios,

this was 52(0.2 + 0.5)/2 = 9100 for the cases displayed in

Fig. 3A, C and 52(0.5 + 0.8)/2 = 16900 for the cases dis-

played in Fig. 3B, D. While B is small, the difference in

the total costs achieved by each of the methods is small,

as management costs dominate the expenditure. Hence,

the cost ratio is close to one. As B increases, the total

costs decrease until they reach the costs achieved by the

unconstrained optimal survey effort allocation. In some

scenarios (e.g., Fig. 3A), the cost ratio between the

“removal” and “nonremoval” methods is smallest when

the budget is unconstrained. In others (e.g., Fig. 3B–D),
the difference in efficiency is more prominent when the

survey budget is constrained. For instance, in Fig. 3D, the

total costs when “removal” surveys are used is 30% lower

than when “nonremoval” surveys are used if the survey

budget is unconstrained, but more than 50% lower for

particular constrained budget levels. The impact of disre-

garding that surveys stop after detection can also be

greater under constrained scenarios (Fig. 4).

A scaling in the probability of occupancy changes the

optimal surveillance allocation for unconstrained budgets,

as well as for constrained budgets under the “removal”

survey design (Fig. 5). For the “nonremoval” design, the

solution is the same for both cases, while the budget is

effectively constrained, but note that the optimal uncon-

strained budget level (B*) changes when the occupancy

probabilities are scaled.

Discussion

Spatial prioritization efforts for single species should be

concerned not only with the probability of species occur-

rence, but also with the ability of detecting the species,

associated survey costs, and the benefits derived from spe-

cies detection (Hauser and McCarthy 2009). Our cost

optimization approach considers all of these components

to guide the efficient allocation of surveillance effort in

invasive management programs, with the novelty that

here we adopt a realistic sampling scenario in which sur-

veys stop after species detection (i.e., “removal” sam-

pling). We consider scenarios where the survey budget is

unconstrained as well as constrained. We note that the

latter leads to increased overall costs, as reducing survey

effort below the optimal surveillance level implies that

the potential benefits of early detection are not fully

realized.

(A) (B)

(C) (D) Figure 3. Expected total costs and their ratio

as a function of maximum allowed survey

budget B. Solid line represents the “removal”

design, dashed line represents the

“nonremoval” design, and the thick solid line

is the cost ratio. The dot on the lines

represents the optimal amount of survey

effort; from this point on, the survey budget is

effectively unconstrained. Scenarios: occupancy

probability w 2 ½0:2 0:5� in (A) and (B),

w 2 ½0:5; 0:8� in (C) and (D); detection rate

c 2 0:1; 0:5½ � in (A) and (C), c 2 1:1; 1:5½ � in (B)

and (D); 500 sites; CD = 2; ΔC = 50.
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Dealing with invasions is difficult. There are different

ways to approach the problem of detection and eradica-

tion, and, in fact, different invasion problems will have

different characteristics. Here, we focus on a single species

that is known to have arrived and is identified as damag-

ing. The work we present, as well as that in the original

motivating paper by Hauser and McCarthy (2009), pro-

vides managers with a relatively simple tool to determine

survey effort at the beginning of a management season/

campaign. By determining the best allocation of resources

at a given point of time, these methods do not explicitly

account for the dynamic nature of the invasion. In practi-

cal terms, this limitation has the advantage of simplicity

for implementation by managers. It has proven useful

for seasonal programs such as Victoria’s hawkweed eradi-

cation effort, where a budget is set and resources are

(A) (B)

Figure 5. Effect of occupancy scaling on the optimal level of surveillance (LMi
) under a “nonremoval” design (left) and a “removal” design

(right). In this example, there are 100 sites with four occupancy values, 25 sites of each. Solid lines correspond from bottom to top to w = 0.2

(cyan), w = 0.4 (red), w = 0.6, (green), and w = 0.8 (blue). Dashed lines correspond to a scenario in which occupancy probabilities are scaled by

0.6. For all sites, c = 1 and ΔC = 10. Only under a “nonremoval” design with an effectively constrained survey budget, the optimal level of

surveillance is the same regardless of the scaling in occupancy.

(A) (B)

(C) (D)

Figure 4. As Figure 3, but comparing the

costs of a program based on a “removal”

design when the fact that surveys end after

detection is either considered (solid line) or

disregarded (dashed line) during survey design.
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prioritized in spring and a survey is carried out in sum-

mer. Between seasons, managers have the opportunity to

update occupancy models with the new survey data, pre-

dict possible invasion spread, and re-prioritize effort for

the next survey.

“Removal” sampling is an appropriate assumption in

our invasive species surveillance setting as the focus is

only on the detection of the species. Once the species

is detected at a site, the decision for early management is

triggered. Surveying the site for a longer period of time

after first detection brings no direct benefit in terms of

the decision-making process. The resources “freed up”

once the species is detected are available to be used in

surveying other sites or to be directed to management.

Hence, “removal” sampling will ultimately result in a

more efficient invasive management program, as we have

demonstrated. In some situations, however, the sampling

will necessarily be of the “nonremoval” type. For instance,

the presence of invasive species might be monitored

through the use of camera traps, which are left recording

for a given amount of time with detections only being

identified after camera recollection. Other examples

include surveys that require the postprocessing of col-

lected samples, for example, when species identification is

carried out via genetic analysis.

Regardless of whether “removal” or “nonremoval” sam-

pling is used, the optimization results indicate that more

intensive surveillance should be applied to sites that are

more likely to contain the species and where the savings

due to early detection are large. It is also under these

conditions that the difference in efficiency between the

two sampling methods is greater. Compared to the “non-

removal” case, the optimal surveillance solution for a pro-

gram based on “removal” sampling initially requests more

sampling effort to be applied to all sites. However, this

effort only needs to be fully spent in those sites where the

species is not detected. We can interpret this as follows:

under the “removal” design, the optimization requests

more sampling effort to establish species absence at a site,

and this effort is “borrowed” from sites where the species

is detected. By increasing the chances of detecting the

species, the program obtains more savings from its early

management.

It is important to note that the cost optimization

methodology used is based on expectations, which are a

function of the estimated values for the occupancy proba-

bilities and detection rates. There are some implications

to this. For instance, let us consider the case where survey

budget is constrained. While the optimal solution for the

“removal” sampling surveillance ensures that the expected

survey costs will be within budget, in a practical imple-

mentation, the actual survey costs might be somewhat lar-

ger or smaller due to stochasticity. While this can be

easily dealt with by leaving some moderate room in the

budget for contingency costs, a bigger problem is where

the parameter values used in the optimization do not

provide a reasonably good representation of the true

occupancy probabilities or detection rates characterizing

the system. In such case, the actual survey budget spent

could be considerably larger than expected. Hence, it is

recommended to monitor the progress of the surveillance

program, adapting the strategy if notable disparities are

identified between the assumed and apparent occupancy

probabilities and detection rates. This is relevant not only

when the budget for surveys is tightly constrained as, in

any case, the misspecification of the parameter values will

force the surveillance strategy away from the optimal

solution. In a “nonremoval” design, the amount of effort

actually spent in surveying the sites is ensured to be

within the allowed budget, as surveys costs are not depen-

dent on whether the species is detected or not. However,

this strategy will also suffer from misspecification of the

parameter values and an implementation involving poten-

tial adaptation will also be required for the good perfor-

mance of the program (Hauser and McCarthy 2009).

Alternatively, the surveillance design could explicitly

incorporate parameter uncertainty (McCarthy et al.

2010).

Hauser and McCarthy (2009) discuss the sensitivity of

the optimal surveillance solution with respect to variation

in the occupancy estimates. In particular, they found that,

for a “nonremoval” design with a constrained surveillance

budget, it is only the relative probabilities of occurrence

and the benefits of detection that determine the optimal

allocation. However, this does not hold when the survey

budget is unconstrained (or when it is constrained but

remains effectively unconstrained, i.e., B > B*), as in this

case, the optimal solution is a function of the absolute

values of the occupancy probabilities. We have shown

that, under the “removal” sampling, the absolute values

of the probabilities of occupancy also matter, and this

applies regardless of whether the survey budget is or not

constrained. As an example of the impact of a scaling in

the occupancy probabilities, consider again the scenario

in Fig. 5A. If the optimal allocation of effort were deter-

mined based on the scaled probabilities, with the true

ones being the original ones, then the total costs would

increase by 14% in the unconstrained case. A scaling by

0.3 would result in a 69% total cost increase. This sensi-

tivity of the optimal surveillance solution to the scaling in

occupancy probabilities calls for caution with respect to

the estimates fed into the optimization algorithm. For

instance, it is worth noting that species distribution mod-

eling methods based on presence-only records can only

estimate relative likelihood of species presence (Elith et al.

2011; Fithian and Hastie 2013). Unless there are some
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means for recalibrating their output, using the estimates

from such models will produce a suboptimal solution in

the allocation problem.

Managing invasive species is increasingly important,

both in terms of biodiversity conservation and protecting

economic systems. Monitoring and management must be

combined when dealing with invasive species. Addressing

the trade-off between these two activities leads to more

efficient invasive management programs, ultimately lead-

ing to reduced overall costs. We show how the prevalence

of the species as well as its detectability and the benefits

derived from early detection should be considered. Stop-

ping surveys after detection increases efficiency, with the

gains being fully realized when this is considered when

designing a surveillance program.
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